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Geschäftsstelle:

Tel.: +49 9131 85-67063

Fax: +49 9131 85-67065

Internet: http://www.am.uni-erlangen.de

ISSN 2194-5127, 18.12.2018, No. 400

Numerical investigation of a fully

coupled micro-macro model for

mineral dissolution and

precipitation

von

N. Ray, J. Oberlander & P. Frolkovic̆

No. 400 2018



Numerical investigation of a fully coupled micro-macro model

for mineral dissolution and precipitation

Nadja Ray∗ Jens Oberlander∗ Peter Frolkovič†
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Abstract

Mineral dissolution and precipitation alter a
porous medium’s structure and its bulk properties.
Due to the medium’s heterogeneity and lacks in
dynamic pore-scale measurements, there has been
an increasing interest in comprehensive models ac-
cessing such phenomena on the macroscale with-
out disregarding available pore-scale information.
Such micro-macro models may be derived from de-
tailed pore-scale models applying upscaling tech-
niques and comprise several levels of couplings.
Our model consists of transport equations at the
scale of the porous medium (macro scale) while
taking the processes of convection and diffusion
into account. They include averaged time- and
space-dependent coefficient functions which are in
turn explicitly computed by means of auxiliary cell
problems (micro scale). Structural changes due to
dissolution and precipitation reactions result in a
time- and space dependent domain on which cell
problems are defined. The interface between the
mineral and the fluid and consequently the explicit
geometric structure is characterized by means of
a level-set. Here, information from the transport
equations solutions is taken into account (micro-
macro scale). A numerical scheme is introduced
which enables evaluating such complex settings.
For the level set equation an upwind scheme by
Rouy and Tourin is applied. An eXtended Fi-
nite Element Method is used for the evaluation
of the cell problems while the transport equations
are solved applying Mixed Finite Elements. Ulti-
mately, we investigate the potentially degenerat-
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ing bulk properties of the medium such as poros-
ity and effective diffusion. Moreover, we apply our
approach to the dissolution of an array of calcite
grains in the micro-macro context and validate our
numerical scheme.

1 Introduction

Porous media applications naturally exibit dif-
ferent spatial scales, on which measurements,
modeling and simulations are possible. At
least two scales are commonly identified with a
porous medium: the micro/pore-scale and the
macro/continuum scale. The pore scale is the fun-
damental scale where processes take place with
pore (void) space and solid being distinguishable.
On the other hand, the continuum scale, i.e. the
scale of the porous medium, is ultimately of prac-
tical relevance for reliable reactive transport com-
putations. However, geochemical behavior cannot
be understood considering this larger scale alone
and investigations become increasingly difficult if
the dynamically evolving pore scale structure is
taken into account. In [45], a review of the current
state of pore-scale geochemical processes, latest
experimental techniques for the microscopic char-
acterization and quantification of porous medium
structure and texture as well as reactive transport
modeling on different scales is found.

Modeling approaches include pore-scale mod-
els [4, 21, 54], pore network models [52], hy-
brid models [30, 2, 47], micro-continuum mod-
els [44, 42, 43], micro-macro models resulting from
averaging theory [1, 24], and purely continuum
models; for further references see also [45]. Each
approach has its advantages and disadvantages:
Pore scale models directly take into account the
spatial heterogeneity obtainable for instance from
advanced imaging techniques. Although imaging
techniques have made tremendous progress and
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pore-scale structures and textures may be cap-
tured quite well, dynamic imaging is still a chal-
lenge. Moreover, accurate simulation results are
obtainable only for small spatial and temporal
resolutions even with high-performance comput-
ing. What is more, only pixelized, i.e. unphysi-
cal representations of interfaces are given by (mi-
cro) CT-images, cf. [13] for an energy-based so-
lution strategy in the phase field context. Pore
network models are mesoscale models which are
valid up to the scale, on which continuum models
are applicable. However, the simplicity and qual-
ity of the chosen representative structures may
be a source of inaccuracy and have a large im-
pact on the predictive value. Hybrid models may
combine different types of models such as discrete
and continuum models and/or separate the com-
putational domain in pore-scale and continuum
scale subdomains, which are bidirectionally cou-
pled via boundary conditions or small overlap-
ping handshake domains. The latter models are
not reasonable for all kinds of applications, par-
ticularly if processes leading to the alteration of
the structure are not locally restricted. Likewise,
in dual porosity models, equations that are valid
on different scales are combined. Flow is for in-
stance described by a combination of Stokes equa-
tions (for the void) and Darcy equation (for the
porous matrix) which together are then termed
Brinkman equation, cf. [44, 42, 43] for recent appli-
cations including mineral dissolution. Such micro-
continuum models are a useful tool where compu-
tational expensive pore-scale models are not fea-
sible. However, they have the drawback of not re-
solving interfaces accurately. Furthermore, they
always need a parametrization in terms of the
medium’s bulk properties which is also true for
purely continuum models. Consequently, combi-
nations with heuristics or stand alone pore-scale
modeling are most often used. This approach,
however, disregards the intimate link between the
two tightly coupled scales.

In contrast to this perception, we focus on bidi-
rectionally coupled micro-macro models explicitly
capable of evolving interfaces. Classically, inter-
faces may be described by phase field methods and
level set methods, cf. [21] in the context of pore-
scale dissolution/precipitation reactions. Phase
field models are widely used since they are ana-
lytically more accessible than level set methods
which on the other hand directly yield a descrip-
tion of the evolving sharp interface. In the context
of micro-macro models, a dynamic bidirectional

communication between the evolving micro/pore
scale and the macro/continuum scale may be de-
rived through upscaling techniques. The upscaling
of phase field models was performed to investigate
dendritic growth [8], three phase systems in the
absence of flow [33] and two-phase/unsaturated
flow [37, 36, 5]. On the other hand, an extension of
formal, two-scale, asymptotic expansion including
a level set description for an evolving solid-fluid
interface was introduced in [49, 24]. This method
has been applied to precipitation/dissolution re-
actions [49, 24, 25], locally periodic media [23],
biofilm growth [7, 38, 39], colloid dynamics [28],
drug delivery [29], and reactive flows under domi-
nant convection in [18, 31].

In this research, we numerically investigate a
micro-macro model similar to that stated in [24],
which was derived from a detailed pore-scale
model applying upscaling via two-scale asymptotic
expansion in a level-set framework [24]. In this
model, mineral precipitation and dissolution reac-
tions alter the porous mediums’ structure. More
precisely dissolved chemical species ci are trans-
ported by convection and diffusion through the
porous medium and react to a mineral with non-
negligible volume fraction and density ρ. At the
pore-scale, such reactive transport models have
been considered by [53] in the case of (nearly) cir-
cular dissolution, where phase-field and level set
approaches were compared. Likewise, [50] com-
pared level set and pore network models for small
pore networks and showed the pore network mod-
els’ applicability to geometries extracted from real
microtomography data. [51] investigated reac-
tive transport with first-order kinetics in a level
set framework for simple media such as parallel
planes and arrays of cylinders and also for re-
alistic random porous media. Further investiga-
tions by means of level-set methods was under-
taken in [19, 20] with a focus on precipitation in a
pore throat and a fractured porous medium. Fi-
nally, [22] investigated the dissolution of (an array
of) calcite grains and the preferential dissolution
of mineral composites, again by means of level set
methods at the pore-scale and sophisticated reac-
tion rates according to the transition state theory.

To access larger scales as well, we focus on
micro-macro models instead of pore scale mod-
els. The micro-macro model consists of trans-
port equations for the species’ concentrations at
the scale of the porous medium (macro scale),
taking the processes of convection and diffusion
into account. The transport equations include the
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averaged time- and space-dependent parameters
of porosity, specific surface, and effective diffu-
sion tensor, which is in turn explicitly computed
by means of auxiliary cell problems (micro scale).
Structural changes due to the dissolution and pre-
cipitation reactions result in a time- and space
dependent domain, on which cell problems are
defined. The interface between the mineral and
the fluid and consequently the explicit geomet-
ric structure is characterized by means of a level
set. Here, information from the transport equa-
tions solutions is taken into account (micro-macro
scale). Since the overall model comprise several
levels of couplings, cf. Figure 2, thus far only very
restrictive geometrical settings, e.g. radially sym-
metric situations, have been investigated numeri-
cally [24, 40]. This has led to a greatly simplified
set of equations: Instead of the level-set equation,
an ordinary differential equation is solved and cou-
pled to the partial differential equations for trans-
port.

In this paper, we novelly address the numeri-
cal investigation of the full problem including the
level-set equation. As a proof of concept, we study
a simple micro-macro problem based on the clog-
ging of a single pore (motivated by [19]) as well as
on the dissolution of an irregularly structured min-
eral composite (cf. [9]). In these situations, topo-
logical changes in the pore scale structure arise,
which result in terminating/initializing the degen-
eration of bulk transport properties. We further
illustrate this impact on macroscale transport. Ul-
timately, we investigate the dissolution of an ar-
ray of calcite grains as described in [22], but this
time in the micro-macro context. The evolution
and the strong coupling of scales generally ne-
cessitates solving as many cell problems as there
are elements in the discretization on the macro
scale. However, in the situation of a small Peclet
or Damkohler number, a drastic reduction in com-
plexity is possible since it then becomes evident
that compact or uniform dissolution takes place;
see [17] for a thorough investigation of dissolu-
tion regimes with a focus on wormhole formation
and [1, 2] for a study on the validity of upscaled
models in different regimes.

To reduce the computational effort arising from
the introduction of multiple cell problems, we split
the macroscopic domain into a problem-dependent
partition of subdomains (vertical slices), cf. Fig-
ure 14. For each subdomain, we consider only
one, but evolving microscopic unit cell. We study
the impact of the number of subdomains on the

approximation quality. As discretization meth-
ods, we apply an upwind scheme by Rouy and
Tourin [34] to the level-set equation. EXtended Fi-
nite Element Methods are used to evaluate the cell
problems and Mixed Finite Elements are applied
for solving the transport equation. We quantita-
tively validate our numerical scheme and address
the applicability of Newton’s method. If applica-
ble an ansatz similar to the one proposed in [15]
is applied to include the impact of the magnitude
and direction of the flow velocity on the dissolu-
tion pattern.

Outline: In Section 2, a pore-scale model
including dissolution/precipitation reactions, the
method of formal two-scale asymptotic expansion
in a level-set framework, and the micro-macro
model obtained are stated. In Section 3, the dis-
cretization methods are discussed. In Section 4,
various illustrative examples are investigated nu-
merically to show the feasibility of our approach:
First, the clogging of a single pore is investigated
(Section 4.1) and second, the dissolution of a min-
eral composite is considered (Section 4.2). For
both scenarios, the impact on bulk transport prop-
erties and macroscopic transport is visualized in
Section 4.3. Thereafter in Section 4.4, the dissolu-
tion of an array of calcite grains as an example of a
fully coupled micro-macro problem is investigated
with the outcome being discussed quantitatively.

2 Mathematical model

2.1 Geometrical setting

As underlying geometry, we consider a bounded
and connected domain Ω ⊂ R

2 with exterior
boundary ∂Ω and an associated periodic mi-
crostructure. The microstructure is defined by

unit cells Y =
[

− 1
2 ,+

1
2

]2
being composed of a

solid part Ys and a fluid part Yl := Y \Ȳs with
solid-fluid interface Γ = Ȳl ∩ Ȳs. We define the
scaling parameter ε ≪ 1 and assume that the
macroscopic domain Ω initially is an ideal porous
medium and is therefore decomposed in scaled
unit cells Yε = εY that are shifted in such a way
that their midpoints (i, j) coincide with a regu-
lar mesh of size ε. The scaled and shifted cells,
which are denoted by Y ij

ε , are divided into an anal-
ogously scaled fluid part Y ij

ε,l and solid part Y ij
ε,s.

The scaled and shifted solid-fluid interface is de-
noted by Γij

ε with the unit outer normal νε. The
time-dependent initially connected fluid part/pore
space, the solid part, and the interior boundary of
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the porous medium are defined by

Ωε :=
⋃

i,j

Y ij
ε,l, Ω\Ωε :=

⋃

i,j

Y ij
ε,s,

and Γε :=
⋃

i,j

Γij
ε .

2.2 Pore-scale model

A level set is capable characterizing the fluid
phase/pore space of a saturated porous medium
via

L(t, x) =











< 0 fluid phase/pore space,

= 0 interface,

> 0 solid phase.

In the context of periodic porous media as intro-
duced in Section 2.1, the level-set Lε fulfills the
following ε-scaled partial differential equation, [26]

∂tLε + vn,ε|∇Lε| = 0 x ∈ Ω, t ∈ (0, T ),

Lε(0, .) = L0 x ∈ Ω

with the normal velocity of the interface vn,ε and
initial value L0. In order to close the model, con-
stitutive assumptions for the velocity vn,ε must be
made. For dissolution and precipitation reactions,
it is reasonable to relate the velocity vn,ε to the
reaction rate f , cf. Section 4.4.
In case of heterogeneous reactions with rate f ,

the scaled transport equation for the species’ con-
centration cε reads [24]

∂tcε −∇ · (−vεcε +D∇cε) = 0,

x ∈ Ωε(t), t ∈ (0, T ),

(−vεcε +D∇cε) · νε − εαf(cε, ρ)(cε − ρ) = 0,

x ∈ Γε(t), t ∈ (0, T ),

(−vεcε +D∇cε) · ν = 0,

x ∈ ∂Ω, t ∈ (0, T ),

cε = c0,

x ∈ Ωε(0)

with molecular diffusion D, mineral density ρ,
and α = 1/ρ. The mass conservation law is ap-
plied on the interior interface under the assump-
tion that the interface cannot hold mass and a
no-flux boundary condition is applied on the ex-
terior boundary. The velocity vε in the advective
term may either be prescribed, or be determined
e.g. from the incompressible Stokes equations with

no-slip boundary conditions on the evolving inter-
face, see [24]. Finally, the initial conditions c0 for
the concentration supplements the model.

2.3 Upscaling

To formally identify the limit ε → 0, the method
of two-scale asymptotic expansion is applied. A
mathematical description can be found, e.g., in [3]
and [35]. Concerning the scale separation, besides
the global variable x, a microscopic variable y is
introduced. Both are connected via the relation
y = x/ε. As a consequence, the expansion of the
spatial gradient reads

∇ε = ∇x +
1

ε
∇y.

Furthermore, it is assumed that all variable func-
tions can be expanded in series of the scale param-
eter ε, i.e.

ϕε(t, x) = ϕ0(t, x, y) + εϕ1(t, x, y)

+ ε2ϕ2(t, x, y) + . . . ,

y = x/ε, ϕε ∈ {vε, cε}.

Additionally to the standard expansions intro-
duced above in the framework of a level set de-
scription also the level set Lε itself and the normal
vector νε have to be expanded due to the evolving
microstructure. For a two-dimensional setting the
expansion of the normal vector can be expressed in
terms of the level set and the following expressions
are obtained, see [24]:

Lε(t, x) = L0(t, x, y) + εL1(t, x, y)

+ ε2L2(t, x, y) + . . . ,

y = x/ε,

νε = ν0 + εν1 +O(ε2),

ν0 =
∇yL0

|∇yL0|
, ν1 = τ0

τ0 · (∇xL0 +∇yL1)

|∇yL0|

with τ0 := ν⊥0 . Applying these expansions to
our problem and analyzing the different orders in
εk, k ∈ Z the desired macroscopic homogenized
problem description is obtained, cf. [24]:

Theorem 1. The leading order expansion of the

level set describes the leading order time evolving

domain Yl,0(t, x) := {y : L0(t, x, y) < 0} and in-

terface Γ0(t, x) := {y : L0(t, x, y) = 0} at the mi-

croscale. The leading order concentration c0 and
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level set L0 fulfill the following micro-macro limit

problem:

The transport equation for the concentration c0
reads

∂t(φc0) +∇x · (v0c0)−∇x · (D∇xc0)

= −σf(c0, ρ) in Ω

with porosity φ =
|Yl,0|
|Y | , specific surface σ = |Γ0|

|Y | ,

and diffusion tensor D defined as

Dij :=

∫

Yl,0(t,x)

D (∂yi
ζj + δij) dy (3)

and ζj being the solutions to the supplementary

family of cell problems for j = 1, 2

−∇y · (∇yζj) = 0 in Yl,0(t, x),

∇yζj · ν0 = −ej · ν0 on Γ0(t, x),

ζj periodic in y,

1

|Y |

∫

Yl,0

ζj dy = 0.

Furthermore, the level set fulfills

∂tL0 + vn,0|∇yL0| = 0 in Y × Ω.

In the upscaled model, a prescribed velocity or
Darcy’s velocity v0 as derived in [24] may be used.
We further emphasize that the macroscopic vari-
able x enters the microscale problems as a param-
eter which leads to a bidirectional coupling of the
micro-macro problem as illustrated in Figure 2.

3 Numerics

The fully coupled micro-macro problem as intro-
duced in Theorem 1 in Section 2 must now be
solved efficiently. The evolution and the strong
coupling of scales makes it in general necessary to
solve as many cell problems as there are elements
in the macroscale discretization in each time step
in order to evaluate the macroscopic parameters
accurately. This quickly leads to a large number
of cell problems which significantly increases the
runtime of any simulation. Thus, the numerical
discretization must be chosen such that the com-
promise between accuracy and runtime overhead
is sufficiently met. Different approaches are avail-
able to reduce the computational burden. Besides
parallelization of the code in order to solve the
cell problems simultaneously, offline precomputa-
tions as performed in [13], adaptive strategies as

discussed in [32] in the phase field context, or the
integration of physical information leading for in-
stance to uniformity in one spatial direction may
be applied. The situation in Section 4 enables us
applying the latter approach to the micro-macro
problem.

We now introduce the discretization methods
used for each subproblem and outline the overall
algorithm to capture the complexity of the bidi-
rectionally coupled model.

3.1 Discretization of the level-set

equation

As the level-set equation is defined on the entire
unit cell Y , a natural mesh choice is a structured
cartesian mesh with step size h, cf. Figure 1. On
such a mesh, Finite Difference Methods present
themselves as fast and efficient solvers. In the con-
text of level-set equations, the well-known explicit
scheme introduced by Rouy and Tourin [34] is
used. Although the scheme is first order accurate,
it has some favorable properties. It is reported to
be more accurate when compared to other first or-
der schemes [41, 55]. The scheme gives numerical
solutions fulfilling a discrete maximum principle
under reasonable stability restriction on a choice
of time steps, see (4). If a smooth enough solution
of the level set equation is expected one may use
second order schemes as in [16], but we prefer the
first order scheme that behaves more stable for ex-
ample in the situation of discontinuous speed vn,0.
We note that no so-called reinitialization of the
level set function [20, 53, 15] was necessary to ap-
ply in our numerical experiments.

The scheme by Rouy and Tourin implements
an upwind principle to approximate the spatial
derivatives depending on the sign of the interface
velocity. In 2D, it can be written as

Ln+1
ij = Ln

ij − τ
(

max{vn,0, 0}∇
+
y L

n
ij

+ min{vn,0, 0}∇
−
y L

n
ij

)

with

∇+
y L

n
ij =

(

max{D−y1
Ln
ij ,−D+y1

Ln
ij , 0}

2

+max{D−y2
Ln
ij ,−D+y2

Ln
ij , 0}

2
)

1
2 ,

∇−
y L

n
ij =

(

max{−D−y1
Ln
ij , D+y1

Ln
ij , 0}

2

+max{−D−y2
Ln
ij , D+y2

Ln
ij , 0}

2
)

1
2 .

Here Ln
ij denotes an approximation of the level-set

L(tn, yij) at discrete time tn := nτ and grid point
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yij of the cartesian mesh. Furthermore, D±y1
Ln
ij

and D±y2
Ln
ij denote the standard forward and

backward differences that approximate the first-
order partial derivatives in y1 and y2 direction.

With this explicit scheme, a fast treatment of
the level-set evolution is possible. As mentioned
before a CFL restriction on the time step τ must
be fulfilled:

τ ≤
h

max |vn,0|
. (4)

3.2 Discretization of cell problems

After the nodal values of the level-set function L
are computed for the evolved geometry in Y , the
effective parameters porosity and specific surface
may be computed after a suitable reconstruction of
the interface Γ0. Moreover, the cell problems de-
fined in Theorem 1 must be solved in order to com-
pute the effective diffusion tensor defined in (3).
While the structure of the governing equations is
fairly simple, a difficulty arises since the fluid do-
main Yl,0 is only defined implicitly by the level-set.
Moreover, the boundary conditions are defined on
the implicitly given interface Γ0 which is approxi-
mated by the zero contour of the level-set function.
One possible approach for a resolution of this issue
are front tracking methods. In such methods, the
evolved interface is explicitly tracked by introduc-
ing new mesh points and discretizing the interface
as a lower-dimensional manifold, cf. [48]. Values of
new mesh nodes can be obtained via interpolation
of the computed nodal values Ln+1

ij . This, how-
ever, produces enormous overhead, as each change
of the interface necessarily leads to a reassembly of
the computational grid. Furthermore, depending
on the topology of the geometry, mesh cells can
degenerate and thus invalidate conditions needed
for further numerical methods.

Another approach that we apply in this research
is based on so-called immersed boundary or inter-
face methods. In these methods the implicitly de-
fined interface is incorporated into the assembly of
an existing numerical scheme without any explicit
meshing of the interface. As such, we can use a
suitable fixed mesh of the unit cell Y for all time
steps, and the method shall obtain the current in-
terface position from the nodal values Ln+1

ij . This
approach was used with a great success in multi-
ple scenarios, cf. [19, 21, 27]. One such method
that appears convenient for our purposes is the
eXtended Finite Element Method (XFEM) [14].

The concept of this method is the enrichment

of functions in an existing discrete approximation
space of standard FEM by an “enrichment func-
tion” ψ [14]. In the case of precipitation and disso-
lution with one fluid and one solid phase, a natural
choice for ψ, that is also used e.g. in [14], is the
characteristic function 1Yl,0(t,x) of the fluid phase.
This choice simplifies the form of XFEM when ap-
plied to the cell problems to compute the effective
diffusion tensor (3).
This approach requires an interpolation of the

nodal values Ln+1
ij of the level set function onto

the whole unit cell Y . To this end we divide the
cartesian mesh as used in the level-set discretiza-
tion (Section 3.1) into a simplicial mesh, cf. Fig-
ure 1. Then, the nodal values Ln+1

ij on the vertices
of the triangles can be uniquely interpolated by a
piecewise linear polynomial in each triangle, see
also (5) later. This leads to a polygonal interface
approximation of Γ0 represented by the zero level-
set of the obtained piecewise linear interpolation.
Consequently, each segment of the polygonal in-
terface is a straight line in some triangle T and
can be easily reconstructed, cf. Figure 1 for an
example of an interface defined by the solution of
the level set equation (shown in blue).

We recall some standard notation of the dis-
cretization by FEM for our cell problem in the
situation that Yl,0 ≡ Y using the piecewise linear
basis functions ϕk that are associated with all grid
points yij , i.e. k = k(i, j). The numerical solution
ζh(y) of the cell problem for j = 1 and j = 2 is
represented in the form

ζh(y) =
∑

k

αkϕk(y) . (5)

The unknown coefficients αk are determined by
solving a system of linear algebraic equations, of
which the matrix and the right hand side are as-
sembled from local matrices AT and right hand
sides bT for each triangle T , namely

aTkl =

∫

T

∇ϕk∇ϕl = |T |∇ϕk∇ϕl , (6)

bTk =

∫

∂T∩Γ0

ν0 · ejϕl = |∂T ∩ Γ0|ν0 · ejϕl(s̄),

where s̄ is the midpoint of the boundary segment
∂T ∩ Γ0. Note that in (6) we used also the fact
that the gradients ∇ϕk and the normals ν0 are
constant vectors.
Following [14] the eXtended Finite Element

Method has to implement the following additional
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features when compared to the standard FEM and
for Yl,0 6= Y . Firstly, all basis functions ϕk (and
the associated coefficients αk) are eliminated from
(5) if the support of ϕk lies completely outside
of Yl,0. Consequently one constructs the system
of linear equations only for the unknowns αk for
which the associated grid nodes yij are vertices of
at least one triangle T such that T ∩Yl,0 6= ∅. Note
that such properties can be found easily by check-
ing the signs of the nodal values Ln+1

ij for each
triangle.

Furthermore, if the support of ϕk lies com-
pletely in Yl,0 then the standard computations
as in (6) are used. Finally, one has to modify
the computations only for triangles T , for which
T ∩ Γ0 6= ∅ holds, namely

aTkl = |T ∩ Yl,0|∇ϕk∇ϕl ,

bTj,k = |T ∩ Γ0|ν0 · ejϕl(s̄),

where s̄ is now the midpoint of the (implicitly
given) boundary segment T ∩ Γ0.

With the approach of XFEM, the overhead for
the assembly of the stiffness matrix and the right
hand side with respect to FEM reduces to the com-
putation of the volumes of all fluid subcells T ∩Yl,0
and lengths of all boundary segments T ∩Γ0. One
has to note that this can increase the condition
number of the resulting linear system if the vol-
umes of these fluid subcells are small in compar-
ison to the triangle volumes. Triangles in which
this happens (whereby the criterion for ”small-
ness” must be chosen appropriatly) are simply ig-
nored in the assembly routine, cf. Fig. 1.

Having the numerical solutions of the cell prob-
lem using the XFEM, we can finally compute the
effective diffusion tensor (3) using the same nu-
merical integration as in XFEM.

Finally, the imposed periodic boundary condi-
tions are implemented by a ghost node approach,
cf. Fig. 1. Black nodes are used for computations
while white nodes are synchronized via periodic
boundary conditions and used for e.g. plotting of
the level set contours. More precisely, any access
to nodes on the upper/right boundary (white cir-
cles in Fig. 1) is redirected to the corresponding
nodes on the lower/left boundary (black circles in
Fig. 1). Rectangular dots represent ghost nodes
outside of Y whose values would be needed by the
numerical methods.

h

Figure 1: Example mesh of Y ⊂ R
2. Col-

ors: black: computational nodes, white: peri-
odic boundary/ghost nodes; Shapes: circle: in-
side of Y , square: ghost nodes outside of Y (not
explicitely constructed). Red area: fluid subcells
increasing condition number. Bold lines indicate
the mesh used for the level-set method, dashed
lines are added for the solution of cell problems.
Blue lines show a possible interface defined by a
level-set function.

3.3 Discretization of macroscopic

transport equation and overall

solution algorithm

For the solution of the remaining macroscopic
problem, we use the MATLAB toolbox HyPHM
[12], which provides a parallelized implementa-
tion of a solver for flow and transport problems.
The underlying discretization of the macroscale
transport equation is based on mixed finite el-
ements; more precisely on Raviart-Thomas ele-
ments of lowest order [11]. For details, we refer
to the manual of [12].

The bidirectional coupling of the macro- and
microscale problems is solved algorithmically as
illustrated in Figure 2. An operator splitting
approach between the two spatial scales offers
a simple algorthmic approach to such problems.
Such an approach allows combining existing soft-
ware for simulations of macroscale problems and
microscale/level-set problems as well as accurate
results. However, the introduction of splitting er-
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Solve level set
equation on unit

cells to obtain new
level set

Microscopic scale (computations on unit cells  with space step size )Y h

Solve supplementary
cell problems on the

new geometry
Compute effective

parameters

Simulation time step (with time step size )τ

Macroscopic scale (computations on domain  with space step size )Ω H

Solve macroscale
equations Effective parameters

Macroscale variables (e.g.
concentrations)

Advance to next
time step

Possibly multiple
evaluations (with smaller

time step size)

Figure 2: Algorithmic solution for bidirectionally
coupled micro-macro problem including evolving
microstructures.

rors can impose a heavy penalty on the magni-
tude of time steps in the simulation and thus can
increase computation times. As such, we apply
a global implicit handling by means of Newton’s
method with adaptive time stepping. In such a
way, also larger macroscale time steps may be re-
alized which is highly feasible to investigate long-
term effects. For this, we apply an algorithm us-
ing the Armijo rule in order to increase or de-
crease time step sizes as needed. However, it of-
ten remains necessary to compute multiple mi-
croscale time steps for the level-set evolution in-
side of one time step of the macroscale solver as
the macro time step size could violate the CFL
restriction (4).

4 Simulation results

In this section, various simulation scenarios with
increasing complexity are investigated. We start
considering pore-scale examples in the level-set
context: First, the clogging of a single pore is
investigated (Section 4.1) and second, the disso-
lution of a mineral composite is considered (Sec-
tion 4.2). For both scenarios, the impact on
bulk transport properties is visualized with fo-
cus on their degeneration. Afterwards one sided-
coupled micro-macro problems are investigated for
both scenarios. More precisely, the outcome of
the aforementioned examples is used as an input
for the parametrization of a macroscale transport
model, cf. Section 4.3. The impact of evolving
parameters compared to the case with constant
parameters is clearly visible. The bidirectionally
coupled micro-macro model is investigated in Sec-
tion 4.4. As application, the dissolution of a reg-

ular array of calcite grains is considered and con-
vergence studies are conducted.

4.1 Clogging of a single pore

In this section, we investigate the clogging of a
single pore throat and focus on the degeneration
of the related effective diffusion tensor as defined
in (3). As geometrical setting, we consider a single
pore channel placed in a unit square, cf. left in
Figure 3, which is inspired by Li et al. [19, 20].
We investigate precipitation reactions leading to
the following constant interface velocity:

vn =

{

−0.2 for |y1| < 0.15

0.2 otherwise

The velocity is extended to the whole domain
for computational reasons, cf. right in Figure 3.
The computations are realized with h = 1

64 and
τ = 0.5h.

Such a setting leads to the stepwise clogging of
the pore throat until the single pore channel is
completely filled with the precipitate, cf. right
in Figure 3. Consequently, the effective diffusion
tensor as defined in (3) degenerates with respect
to transport in horizontal direction. This is evi-
dent from Figure 4, in which the evolution of the
diffusion tensor’s eigenvalues is shown. The eigen-
values naturally converge to the eigenvalues cor-
responding to the limit geometry (dashed green
line in Figure 3). From our investigations it is
evident that the bulk transport properties signif-
icantly change with time and topological changes
are easily capable in the level set framework. The
impact on macroscopic transport is further stud-
ied in Section 4.3.

Figure 3: Controlled growth of solid grains by pre-
cipitation. Red: initial interface, blue: current
interface, green: geometry of pore channel.
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Figure 4: Eigenvalues of the (degenerating) diffu-
sion tensor (red and blue). Eigenvalues of com-
pletely clogged pore channel (dashed green) with
values 0 and 0.7.

4.2 Dissolution of a mineral com-

posite

Next, we consider the dissolution of a mineral com-
posite similar to the example given in [21]. Two
minerals, say calcite and dolomite, form an irreg-
ular but periodic pattern left and right to a single
pore/fracture, cf. Figure 5 on the left.

Figure 5: Irregular mineral composition with ver-
tical fracture (left). Definition of dissolution
speed vn,ε extended to the whole domain (right).
Calcite (light gray), dolomite (dark grey).

The two minerals are dissolved with different,
but constant velocities, cf. Figure 5 on the right:

vn,calcite = 0.5

vn,dolomite = 0.05

The computations are realized on the unit
square domain with the discretization steps h = 1

80
and τ = 0.5h.
It is evident from Figure 6 that the cal-

cite domain is dissolved preferentially and chan-
nels/wormholes are formed while dolomite dis-

Figure 6: Time series for dissolution of composite
of two differently strong dissolvable minerals (cal-
cite and dolomite). Red: initial interface, blue:
current interface.

solves very slowly and remains as the porous ma-
trix for longer time scales. Consequently, effec-
tive diffusion is first possible only in vertical direc-
tion (along the fracture) whereas the degenerated
eigenvalue corresponding to the horizontal direc-
tion becomes positive after reasonable amount of
calcite has been dissolved, cf. Figure 7. As in
the previous example, bulk transport properties
significantly change with time and underlying ge-
ometry. The impact on macroscopic transport is
again studied in Section 4.3.

4.3 Simple micro-macro problem

To illustrate the non-negligible effects that the un-
derlying structural evolution of a porous medium
has on the macroscale transport behavior, we con-
sider the diffusive transport of a chemical species
on a macroscopic domain Ω = (0, 1)2, cf. Sec-
tion 2:

∂t (φc)−∇ · (D∇c) = 0 in (t0, t1)× Ω,

−D∇c · ν = 0 on (t0, t1)× ∂Ω,

c(t0, x) = 1Br(m)(x)

where φ and D are the effective parameters ob-
tained from the microscale, cf. Theorem 1 with
D = 0.01. The initial values are depicted on the
top in Figure 8 and 9 and given by the charac-
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Figure 7: Eigenvalues of the (degenerating) diffu-
sion tensor.

teristic function 1Br(m) of the circle with radius
r = 0.15 around the midpoint m = (0.5, 0.5)T of
Ω, i.e.

1Br(m)(x) =

{

1, ‖x−m‖ < r,

0, otherwise.

For the evolution of the fluid-solid interface at the
microscale we consider the scenarios described in
Sections 4.1 and 4.2. Consequently, the values
computed there are taken for the parametriza-
tion of the macroscopic transport equation. In
this sense, we evaluate a one-sided coupled micro-
macro problem since the macroscale solution has
not back coupling to the microscale problem.
Moreover, the cell problems vary in time but not
in space, i.e. only one cell problem and the corre-
sponding values of φ and D have to be evaluated
per time step which significantly reduces the com-
putational burden. For both scenarios we evaluate
the following three test cases:

1. Effective parameters are fixed at the initial
time ( the values at t = 0 for the single pore
scenario, the values at t = 0.90625 for the
mineral dissolution scenario).

2. Effective parameters vary in time dependent
on the current state of the underlying geom-
etry

3. Effective parameters are fixed at values ob-
tained in the time t = 1.5.

Note that numerically stable simulations are
only possible for symmetric and positive definite

diffusion tensors D within the used software pack-
age HyPHM, i.e. for time intervals (t0, t1) ⊂
(0, 1.5) in which the diffusion tensors do not degen-
erate, cf. Figure 4 and 7. Numerical tests showed
that with our chosen time step size of 0.00625, the
largest usable time interval without numerical in-
stabilities is (0, 0.99375) in the pore clogging sce-
nario. In the mineral dissolution scenario, numer-
ical tests showed that (0.90625, 1.5) is the largest
usable time interval without numerical instabili-
ties.

It is evident from the simulation outcome de-
picted in Figure 8 and 9 that the choice of a
constant parametrization shows significantly dif-
ferent behavior than the choice of a dynamic
parametrization. This is particularly the case if
transport is restricted to one spatial direction, cf.
Figure 8 on the right and Figure 9 on the left. We
conclude that changes in pore-scale structures are
non-negligible for accurate macroscopic model de-
scription, especially if degeneration of transport to
one spatial direction plays a role.

4.4 Advanced micro-macro prob-

lem

In this section, we investigate the bidirectionally
coupled micro-macro problem and proof the ca-
pability of our model approach. The various cou-
plings inherent to this problem are illustrated in
Figure 2. We consider the dissolution of an array
of calcite grains similar to [22] who investigated
the same scenario, but in the context of a pore-
scale simulations. At the pore scale, the domain
Ω = (0, 1) × (0, 0.5) [cm2] is filled with equally
distributed calcite grains with an initial radius of
0.01 cm (28 slices with 13 or 14 grains in each
slices). These grains are dissolved by surface reac-
tions through the following pathways [46]

CaCO3(s) → Ca2+ +CO2−
3

CaCO3(s) +H+ → Ca2+ +HCO−
3

into calcium and (hydrogen)carbonate. The sur-
face reaction rate of this pathway is

R(~c) = (k1cH+ + k3)

(

1−
cCa2+cCO2−

3

Keq

)

[mol m−2s−1]

(7)

with rate constants k1 = 0.89[mol m−2 s−1], k3 =
6.6 · 10−7[mol m−2 s−1] and equilibrium constant
Keq = 10−8.234.
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Figure 8: Diffusion of macroscopic concentration in the pore clogging scenario. Each column shows the
simulations of the test cases 1 to 3. From top to bottom: solutions at t = 0, t = 0.5 and t = 0.96875.
All images are taken with a linear scale from 0 to 1.

We are interested in investigations at the macro-
scopic scale and the setting transfers to the fol-
lowing macroscopic reactive transport problem in
the domain Ω for the vector of mobile species ~c =

(cH+ , cCa2+ , cCO2−
3
), cf. Section 2.

∂t(φ~c) + L~c = 28σ ~R(~c) in Ω, (8)

(L~c)∗ := ∇ · (c∗~v − D∇c∗) ,

∗ ∈ {H+,Ca2+,CO2−
3 },

(c∗~v − D∇c∗) · ~n = 0 on (0, 1)× {0, 0.5},

(cCa2+~v − D∇cCa2+) · ~n = 0 on {0} × (0, 0.5),

(cCO2+
3
~v − D∇cCO2+

3
) · ~n = 0 on {0} × (0, 0.5),

(cH+~v − D∇cH+) · ~n = 10−5~v · ~n

on {0} × (0, 0.5),

−D∇c∗ · ~n = 0 on {1} × (0, 0.5),

cCa2+(0, ·) = 0,

cCO2+
3
(0, ·) = 0,

cH+(0, ·) = 10−5,

(9)
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Figure 9: Diffusion of macroscopic concentration in the mineral dissolution scenario. Each column
shows the simulations of the test cases 1 to 3. From top to bottom: solutions at t = 0.90625, t = 1.2
and t = 1.5. All images are taken with a linear scale from 0 to 1.

with porosity φ, specific surface σ, and effective
diffusion tensor D as defined in (3) with molecu-
lar diffusion coefficient D = 1

50000 [cm
2 s−1]. The

vector ~R of reaction rates is given by

~R (~c) :=







−k1cH+

(

1−
c
Ca2+

c
CO

2−
3

Keq

)

R(~c)
R(~c)







with the reaction rate R from (7).
The geometry of the domain Y on which the cell

problems are defined is determined by the level set
equation

∂tL+ vn|∇L| = 0 in Ω× Y

with Y = [− 1
2 ,

1
2 ]

2 and initial level set L0(~y) =
0.28−|~y|. This initial state is chosen for all ~x ∈ Ω.

We consider the following two situation: First,
the isotropic situation, for which we assume that
uniform dissolution takes place and that the nor-
mal velocity of the interface vn is related to the
reaction rate R(~c), cf. Section 4.4.1. Second, the
anisotropic situation, for which we additionally in-
corporate the impact the direction of flow has on
the dissolution profile and therefore modulate the
relation of the isotropic situation by means of a
function f , cf. Section 4.4.2.

In both situations, the dissolution speed de-
pends on the macroscopic concentrations of the
mobile species hygrogen H+, calcite Ca2+, carbon-
ate CO2−

3 , and hydrogen carbonate HCO−
3 and

thus varies throughout the macroscopic domain.
However, in the case of uniform or compact disso-
lution a vertically uniform dissolution speed is ex-
pected, whereas along the horizontal axis a hetero-
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geneous distribution is evident due to a prescribed
uniform advective flux. We consider two velocities,
~v = 0.1 · (1, 0)T [cm s−1] and ~v = 0.001 · (1, 0)T [cm
s−1], resulting in Peclet numbers of 5000 and 50,
respectively.
Consequently, we decompose the macroscopic

domain in vertical slices, cf. Figure 14. A dis-
tinct constant concentration value is obtained for
each slice by averaging the respective values over
the slice. For each such slice, the level set evo-
lution must be evaluated in a representative unit
cell Y .
In the situation described in [22], a pore-scale

simulation based on 28 physical slices is consid-
ered. In the micro-macro context, this results in
the computation of 28 ·N level-set evolution steps
(where N ∈ N is a fixed number of level-set evo-
lutions for every cell problem) and assemble and
solve 28 linear systems for the discretization of the
cell problems. In our simulations, we set N = 10
in order to ensure a sufficient accuracy of the so-
lution of the level-set equation. As the computa-
tional time for the level-set equation is small in
comparison to solving the cell problems, even a
larger choice for N causes no significant simula-
tion overhead.

4.4.1 Isotropic situation

In the isotropic situation, the normal velocity of
the interface vn is related to the reaction rate via

vn = 28VmR(~c)[(length scale of Y)s−1] (10)

with molar volume of calcite Vm = 36.93[cm3

mol−1] [10].
In Figure 10 and 11 the resulting uniform dis-

solution of calcite grains in the unit cell Y are
depicted from which macroscopic transport prop-
erties are calculated. Figure 12 shows the macro-
scopic calcium concentration at final time for the
situation of 28 slices as described in [22] with
Pe = 50 and Pe = 5000. The range of concen-
tration obtained in the micro-macro context per-
fectly fits the ones of the pore-scale simulations
conducted in [22].
Ultimately, we study the convergence proper-

ties of our solution scheme as summarized in Ta-
bles 1 to 5 to quantify the effort of the micro-macro
approach. To estimate a so-called Experimental
Order of Convergence (the EOC) with respect to
some discretization parameter, e.g. H, h, or ε, we
compute a series of examples in which one of this
discretization parameter is refined uniformly by a

Figure 10: Fluid–solid interface at initial time for
all slices (red) and at time T for leftmost slice
(black), middle slice (blue), and rightmost slice
(green).

Figure 11: Evolution of the interface on the left-
most slice with nonequidistant time step sizes.

factor of 2, e.g., H0 is given and Hj+1 = 0.5Hj ,
j ∈ N and

EOC ≈ log2

(

‖cj − cj+1‖

‖cj+1 − cj+2‖

)

, (11)

where cj denotes the obtained calcium concentra-
tion for the j-th value of the discretization param-
eter.
We first investigate the approximation quality

of the macroscopic transport for various numbers
of slices, i.e. the computational domain is vir-
tually represented by a different number of slices
N ∈ {25, 50, 100, 200, 400}, cf. Figure 14. In do-
ing so, the right hand side of (8) and (10) must
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Figure 12: Macroscopic calcium concentrations for different Peclet numbers. Top left: Pe = 50, bottom
left: Pe = 5000. Right: 1D comparison of values.

be replaced by 1
ε
σ ~R (~c) and 1

ε
VmR (~c) with scaling

parameter ε := 1
N
. In Figure 12 the horizontal dis-

tribution of Ca2+ is shown and in Table 1 the EOC
is evaluated depending on the number of slices.

For the refinement of the macroscopic dis-
cretization parameter H, we fix the values h =
1/64 and ε = 1/50 and consider Pe = 50 and
Pe = 5000. We obtain the EOC being 1, cf. Ta-
bles 2 and 4. This confirms the expected order of
convergence of the mixed FEM with P0-RT0 ele-
ments.

For the refinement of the microscopic discretiza-
tion parameter h while choosing H = 1

500 and
ε = 1

50 , our simulations using Newton’s method
for a globally implicit handling show an estimated
order of convergence of 2, cf. Tables 3 and 5. The
results show that the orders of convergence stay
the same for Pe = 5000 and Pe = 50. However,
for smaller Peclet number we obtain ”smoother”
values for the order of convergence. A possible ex-
planation lies in the effect of the time discretiza-
tion. In the globally implicit approach, we choose
a non-equidistant time step size. This is necces-
sary as the initial values lead to instabilities due

to nonconformity with the reactive system. After
the initial stage of the simulation, the system stays
stable even with larger time step sizes. This allows
for a speedup of total simulation time. This can
imply that the time discretization error becomes
dominant with time, which could be seen in the
case of large velocities.

4.4.2 Anisotropic situation

In this Section, we consider the more sophisticated
anisotropic scenario. In this scenario, we include
the impact that the direction of flow has on the
dissolution profile. More precisely, the angle be-
tween fluid velocity and outer normal of the fluid
(i.e. pointing into the solid) is included into the
dissolution rate. In this sense an anisotropic geom-
etry evolves even when starting with an isotropic
initial geometry, cf. Figure 17. In such situations
it is crucial to apply the level set solver to resolve
the evolution of the geometry. The previous ex-
ample could also be handled using a representative
radial formulation as in [11].
In order to observe effects of fluid flow on the

evolution of the fluid-solid-interface in the mi-
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Table 1: Errors and estimated order of convergence wrt. scale separation factor ε. Other
parameters: Pe = 5000, H = 1/1000, h = 1/64.

ε ‖cεi−1
− cεi‖L2

‖cεi−1
−cεi‖L2

‖cεi‖L2
EOC (L2) ‖cεi−1

− cεi‖L1

‖cεi−1
−cεi‖L1

‖cεi‖L1
EOC (L1)

1
25 - - - - - -
1
50 5.7105e−9 1.7533e−2 - 3.6233e−10 1.7987e−2 -
1

100 1.8578e−9 5.7310e−3 1.6200 1.2409e−10 6.1985e−3 1.5459
1

200 4.1242e−10 1.2736e−3 2.1714 2.7048e−11 1.3529e−3 2.1978
1

400 6.9247e−11 2.1386e−4 2.5743 3.9231e−12 1.9625e−4 2.7855

Table 2: Errors and estimated order of convergence wrt. macroscale discretization parameter H
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 5000,
h = 1/64, ε = 1/50

H ‖cHi−1
− cHi

‖L2

‖cHi−1
−cHi

‖
L2

‖cHi
‖
L2

EOC (L2) ‖cHi−1
− cHi

‖L1

‖cHi−1
−cHi

‖
L1

‖cHi
‖
L1

EOC (L1)
1
50 - - - - - -
1

100 5.7332e−8 8.1628e−2 - 2.5411e−9 5.4319e−2 -
1

200 3.8718e−8 5.5215e−2 0.5664 1.5330e−9 3.2843e−2 0.7290
1

400 1.3844e−8 1.9741e−2 1.4837 6.2588e−10 1.3411e−2 1.2924
1

800 7.9131e−9 1.1284e−2 0.8070 3.4007e−10 7.2868e−3 0.8801

Table 3: Errors and estimated order of convergence wrt. microscale discretization parameter h
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 5000,
H = 1/500, ε = 1/50

h ‖chi−1
− chi

‖L2

‖chi−1
−chi

‖
L2

‖chi
‖
L2

EOC (L2) ‖chi−1
− chi

‖L1

‖chi−1
−chi

‖
L1

‖chi
‖
L1

EOC (L1)
1
4 - - - - - -
1
8 1.1911e−8 1.7044e−2 - 7.6489e−10 1.6452e−2 -
1
16 6.7455e−9 9.6267e−3 0.8204 2.0190e−10 4.3301e−3 1.9216
1
32 9.7455e−10 1.3899e−3 2.7911 4.0284e−11 8.6334e−4 2.3254
1
64 2.0741e−10 2.9576e−4 2.2322 9.6652e−12 2.0710e−4 2.0593
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Table 4: Errors and estimated order of convergence wrt. macroscale discretization parameter H
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 50,
h = 1/64, ε = 1/50

H ‖cHi−1
− cHi

‖L2

‖cHi−1
−cHi

‖
L2

‖cHi
‖
L2

EOC (L2) ‖cHi−1
− cHi

‖L1

‖cHi−1
−cHi

‖
L1

‖cHi
‖
L1

EOC (L1)
1
50 - - - - - -
1

100 3.0811e−7 6.3944e−2 - 1.0945e−8 3.2965e−2 -
1

200 1.5989e−7 3.3182e−2 0.9464 5.3837e−9 1.6222e−2 1.0236
1

400 8.1146e−8 1.6841e−2 0.9785 2.6630e−9 8.0253e−3 1.0156
1

800 4.0878e−8 8.4838e−3 0.9892 1.3232e−9 3.9878e−3 1.0090

Table 5: Errors and estimated order of convergence wrt. microscale discretization parameter h
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 50,
H = 1/500, ε = 1/50

h ‖chi−1
− chi

‖L2

‖chi−1
−chi

‖
L2

‖chi
‖
L2

EOC (L2) ‖chi−1
− chi

‖L1

‖chi−1
−chi

‖
L1

‖chi
‖
L1

EOC (L1)
1
4 - - - - - -
1
8 3.6953e−8 7.6783e−3 - 1.9739e−9 5.9568e−3 -
1
16 6.5488e−9 1.3595e−3 2.4964 3.4800e−10 1.0491e−3 2.5039
1
32 1.6138e−9 3.3494e−4 2.0208 8.5591e−10 2.5796e−4 2.0235
1
64 4.0384e−10 8.3811e−5 1.9986 2.1405e−11 6.4510e−5 1.9995

croscale, we consider a variable normal velocity:

vn(~c,~v) := vn,iso(~c)f(~v · ~n),

f(x) :=

{

exp(−µx2), x ≤ 0,

(1− λ) exp(−µx2) + λ, x > 0,

(12)

with parameters µ > 0, 0 ≤ λ ≤ 1. For f = 1, we
exactly obtain the normal velocity vn,iso as given
in (10). The function f modulates the solid dis-
solution depending on magnitude of the velocity
and the angle α enclosed with the boundary since
~v · ~n = |~v| cos(α). Positive values of ~v · ~n corre-
spond to an acute angle, i.e. the left part of the
solid grains which is first hit by an fluid inflowing
from left to right. Likewise, negative values of ~v ·~n
correspond to an obtuse angle, i.e. the right part
of the solid which is in its slipstream. Since the
fluid flow transports the reacting chemicals to the
solid, the function f takes larger values for ~v · ~n
positive than for ~v · ~n negative. The maximum
value of f around ~v ·~n = 0, α = 90◦ models the ef-
fect that dissolution happens the fastest in regions
where the reaction product (dissolved calcium) is
transported away quickly (top and bottom of the
grain). On the contrary, the value of f is minimal
directly behind the grain, i.e. for α = 180◦.

The inflection point of (12) lies at x = 1

(
√
2µ)

.

As a consequence, the order of magnitude of µ is

a critical choice in order to obtain a suitable ge-
ometry. Figure 15 shows plots of f given in (12)
for different values for µ. Figure 17 depicts the re-
sulting evolving microscopic geometries for these
choices. It is evident that the choice µ = 5e+2
reproduces the nearly isotopic behavior which was
already studied in Section 4.4.1 since f is close
to 1. The value µ = 5e+4 leads to the follow-
ing dissolution behavior. For acute angles, an al-
most uniform dissolution speed is seen, while for
obtuse angles, there is almost no dissolution. The
value µ = 5e+3 reproduce shapes as they have also
been observed in [22] and seems to be a reasonable
choice. For this parameter, convergence tests for
the fully coupled micro-macro problem with non-
uniformly evolving geometry as performed for the
isotropic setting in Section 4.4.1 have been carried
out. The results are shown in Tables 6, 7, 8, and 9.

The estimated order of convergence (EOC) is
1 in the macroscopic as well as in the micro-
scopic discretization parameters H and h. The
EOC in the macroscopic parameter H does not
change compared to the scenario investigated in
Section 4.4. However, the EOC in the microscopic
parameter h reduces from 2 to 1. As a first-order
scheme is used for the discretization of the level
set equation, this order of convergence is to be ex-
pected. The difference between this scenario and
section 4.4 lies in the anisotropic evolution of the
solid grains. We conclude that the higher EOC in
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Table 6: Errors and estimated order of convergence wrt. macroscale discretization parameter H
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 5000,
h = 1/64, ε = 1/50

H ‖cHi−1
− cHi

‖L2

‖cHi−1
−cHi

‖
L2

‖cHi
‖
L2

EOC (L2) ‖cHi−1
− cHi

‖L1

‖cHi−1
−cHi

‖
L1

‖cHi
‖
L1

EOC (L1)
1
50 - - - - - -
1

100 2.1690e−7 4.5028e−1 - 1.4790e−8 4.7870e−1 -
1

200 2.2991e−8 4.8529e−2 3.2379 1.1961e−9 3.9565e−2 3.6282
1

400 9.6600e−9 2.0452e−2 1.2510 5.2020e−10 1.7275e−2 1.2012
1

800 5.8865e−9 1.2474e−2 0.7146 2.7957e−10 9.2918e−3 0.8959

Table 7: Errors and estimated order of convergence wrt. microscale discretization parameter h
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 5000,
H = 1/500, ε = 1/50

h ‖chi−1
− chi

‖L2

‖chi−1
−chi

‖
L2

‖chi
‖
L2

EOC (L2) ‖chi−1
− chi

‖L1

‖chi−1
−chi

‖
L1

‖chi
‖
L1

EOC (L1)
1
4 - - - - - -
1
8 8.3149e−8 2.0246e−1 - 4.7693e−9 1.8716e−1 -
1
16 6.5394e−8 1.4647e−1 0.3465 3.1172e−9 1.1029e−1 0.6135
1
32 1.8606e−8 4.0092e−2 1.8134 1.2595e−9 4.2662e−2 1.3074
1
64 9.4874e−9 2.0103e−2 0.9717 5.7432e−10 1.9091e−2 1.1329

section 4.4 is a sign of superconvergence resulting
from the regular structure of the geometry.

5 Conclusion

In this research, we presented an overall solution
strategy for efficiently solving fully coupled micro-
macro problems which are the result of an av-
eraging procedure. For illustration purposes, we
focused on problems including dynamically evolv-
ing microstructures as a result of precipitation and
dissolution reactions. In order to capture the aris-
ing interfaces explicitly, the problem was imple-
mented in a level-set framework. This present re-
search was designed to demonstrate feasiblity of
fully coupled micro-macro models. Despite their
complexity, suitable numerical tools have been
applied to overcome the computational burden.
This proof of concept is of highly practical rele-
vance since micro-macro problems can captured
the physics of the porous media applications in
great detail. However, further research is needed
to improve the accuracy of the model description
and simulation results. A well-known improve-
ment for avoiding negative concentrations and ac-
counting for the constant activity of minerals is the
modeling of dissolution/precipitation reactions by
means of a set valued Heavyside graph [6]. More-
over, it seems reasonable to apply a Mixed Finite

Element discretization for the cell problems in or-
der to avoid numerical differentiation. Finally, fur-
ther research might certainly include the detailed
aspects of non-constant fluid flow, e.g. by means
of Darcy’s law and related auxiliary cell problems.
It is to be expected that the same methods ap-
plied in this research are directly transferable to
the additional model components. This research’s
solution strategies and findings are helpful when
further exploring fully coupled micro-macro prob-
lems such as in the field of biofilm growth.

In our research, representatives of realistic pore
scale geometries have already been used. An im-
portant issue that is a topic of current discus-
sions and needs further evaluation is investigating
of the accuracy of upscaled quantities at various
scales, i.e. for various sizes of realistic represen-
tative elementary volumes. Our findings may be
used to study this impact on macroscale transport
behavior in porous media and helps balancing the
need for accurate bulk parameters versus compu-
tational effort.
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Table 8: Errors and estimated order of convergence wrt. macroscale discretization parameter H
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 50,
h = 1/64, ε = 1/50

H ‖cHi−1
− cHi

‖L2

‖cHi−1
−cHi

‖
L2

‖cHi
‖
L2

EOC (L2) ‖cHi−1
− cHi

‖L1

‖cHi−1
−cHi

‖
L1

‖cHi
‖
L1

EOC (L1)
1
50 - - - - - -
1

100 3.1951e−7 6.7237e−2 - 1.1671e−8 3.5746e−2 -
1

200 1.5244e−7 3.2111e−2 1.0676 5.4398e−9 1.6695e−2 1.1014
1

400 7.6805e−8 1.6171e−2 0.9889 2.6732e−9 8.2004e−3 1.0250
1

800 3.8704e−8 8.1491e−3 0.9887 1.3270e−9 4.0707e−3 1.104

Table 9: Errors and estimated order of convergence wrt. microscale discretization parameter h
with Newton after implementation of non-equidistant time steps. Other parameters: Pe = 50,
H = 1/500, ε = 1/50

h ‖chi−1
− chi

‖L2

‖chi−1
−chi

‖
L2

‖chi
‖
L2

EOC (L2) ‖chi−1
− chi

‖L1

‖chi−1
−chi

‖
L1

‖chi
‖
L1

EOC (L1)
1
4 - - - - - -
1
8 5.0855e−8 1.0742e−2 - 2.7857e−9 8.5787e−3 -
1
16 1.4653e−8 3.0888e−3 1.7952 7.7583e−10 2.3835e−3 1.8442
1
32 5.1457e−9 1.0840e−3 1.5097 2.6772e−10 8.2182e−4 1.5350
1
64 2.0875e−9 4.3965e−4 1.3016 1.0721e−10 3.2899e−4 1.3203
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[15] Frolkovič, P.: Application of level set method
for groundwater flow with moving boundary.
Adv. Water. Resour. 47, 56–66 (2012)
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